

Identifying dying people using data

A/Prof Daryl Jones

I see dead people

Overview

- How often do patients die in hospital
- Trajectories of death
- Dying and the deteriorating patient
- Predicting in-hospital death
- 5 ways to use data to identify dying patients
 - Big data
 - Audit of resuscitation plans
 - Audit of your end of life care MET calls
 - Morbidity and mortality meetings
 - Audits of in-hospital cardiac deaths

How often do patients die in hospital

- Not widely published
- HOPE equation
 - Risk-adjusted hospital outcome prediction equation (HOPE)
 - Victoria wide data approx. 380,000 admissions
 - In-hospital mortality = 2.5%
- Austin Hospital long stay study
 - 22,094 admissions > 24hr amongst 15,623 patients
 - Mortality = 891 (4.0%)

- 1. Duke etal IMJ 2009
- 2. O'Sullivan etal IMJ 2017

Trajectories of death

Lunney J, et al. Journal of the American Geriatrics Society 2002; 50 : 1108

Phase of end of life care

Acutely deteriorating patients

Predicting in-hospital death

• HOPE equation

 Risk-adjusted hospital outcome prediction equation (HOPE)

Table 3 Top 10 primary diagnostic categories according to mortality rate

Description	ICD-10AM	Frequency, n (%)	Died [†]
Pneumonia	J100-J199	10 225 (2.7)	681 (7.2)
Stroke	1630-1699	4946 (1.3)	580(6.1)
Secondary malignancy	C760-C799	5044 (1.3)	551 (5.8)
Myocardial infarction	1210-1219	9264 (2.4)	498 (5.3)
Heart failure	150-1599	7421 (1.9)	471 (5.0)
Intracranial haemorrhage	1600-1629	1573 (0.4)	442(4.7)
Septicaemia	A40-A499	2868 (0.8)	421 (4.4)
Chronic pulmonary disease	J400-J449	9561 (2.5)	376(4.0)
Respiratory malignancy	C30-C399	2361 (0.6)	298(3.1)
Upper gastrointestinal malignancy	C150-C219	4276(1.1)	271 (2.9)
Subtotal		57 539(15)	4589 (48)

*Absolute number (percent of all deaths). ICD-10AM, International Classification of Diseases, version 10, Australian modification.

1. Duke etal IMJ 2009

Calculation of hospital outcome prediction equation (HOPE)

	Variable	Definition	Format
A	Age	Patient age	Years
В	Primary Diagnosis	Diagnosis on admission to hospital	Diagnostic coefficient (available on request)
С	Inter-hospital transfer	Transfer from another acute health care facility	Yes = 1; No = 0
D	RACF	Resident from an aged care facility prior to admission	Yes = 1; No = 0
E	Unplanned admission	Admission that was not planned, booked, or elective	Yes = 1; No = 0
Μ	Sex	Male	Yes = 1; No = 0

Machine learning – real time algorithms

• E-CART

Churpek etal Am J Resp Crit Care Med 2014

5 ways to use data to identify dying patients

- 1. Big-data e.g. E-CART, HOPE equation
- 2. Audit of your resuscitation plans
 - Do you have a policy for completion
 - -How often are they completed
 - -Are they completed in accordance with policy
 - -Are they completed in patients who have died
 - Timeliness of completion (in relation to admission & death)

3. Audit of your end of life care MET calls

- Approx. 1/3 MET calls have EOLC issues
- Mortality ≈ 50-60% cf: ≈ 10-15% if no EOLC issues
- Some teams over-represented
 - » Focus of QI initiatives to improve ACP and EOLC
- Did the patient have a limitation of medical Rx
 - » Before the call / After the call
- Nature and quality of palliative care given
- ? Agreement between MET and parent team
 - What were the in-hospital outcomes

Austin Health

4. Morbidity and mortality meetings

- "The clinicians who provided the care should ideally not be the people who decide if the death was preventable"
- Regular
- Transparent and open
- Standardised tool
- Peer review
- Free from blame focus on learnings and QI cycle
 - Process of escalation

SARC = surgical audit review committee

- Unit meetings = internal review
- Regular M+M Thurs morning with all surgeons
 - -Deaths presented in open forum (up to 100)
 - -Robust discussion
 - -Notes documented
- Tool completed & Case summarized → submitted to SARC

Admission Diagnosis Pydoderma gang	renosum/chronic leg ulcers					
Cause of Death (on death certificate) Res	piratory failure					
Discussion at Weekly Surgical Audit Nil issues identified.						
Are any of the following present?		Yes	No			
Coroner's Case			Х			
Autopsy Requested			Х			
Death within 24 hrs admission (unless known palliative on admission)			х			
Was death anticipated on admission			X			
Did death occur during a procedure			Х			
Death in Operating Theatre			Х			
Death in Cardiac Cath Lab			Х			
Death during diagnostic procedure			х			
Age <50 and death NOT from chronic illness			Х			
Sentinel event occurred (a clear cut events that occur independently of a			х			
patient's condition and result in unanticipated						
physical/psychological injury to patient - see						
Elective surgical admission						
Did the Patient have an Advanced Care Plan/Directive						
Did CPR occur?			Х			
Was the patient transferred from external healthcare facility			Х			
 Did the transfer occur out of hours? 			Х			
Death following readmission <72 hours post discharge (incl. ED)			Х			
Death following transfer between hospitals sites (unless to Palliative Care			х			
Unit/Aged Care with expectation of death)						
Readmission to ICU <24 post discharge to ward			Х			
Complications/Adverse events (unexpected / resulting in) death						
Death Status - Select the most appropriate						
Expected death no care management issues	\$					
Expected death with care management issue						
Unexpected death which occurred despite ta	Х					
measures						
Preventable death where steps may not have						
Unexpected death resulting from medical intervention						

Thurs M+M SARC Patient review committee (PRC) **Executive / Legal**

Audit of in-hospital cardiac arrests

- Recommended
 - -ACHS
 - -ACSQHC
 - -iSRRS
- Need to have a process to identify / capture
 ICU most likely method = attend all
- How many do you have?

- Utstein template for audit of cardiac arrests
- Simplified version
 - Demographics
 - -Co-morbidities / functional status
 - Shockable / non-shockable
 - -Measure of quality of resuscitation
 - -Antecedent warning signs (e.g. MET criteria)
 - -Was the MET activated ?

Summary

- In-hospital mortality 2-4%
- 4 common trajectories of death
- Predictive equations exist
- 5 ways to use date to identify dying patients
 - Big data
 - Audit of resuscitation plans
 - Audit of your end of life care MET calls
 - Morbidity and mortality meetings
 - Audits of in-hospital cardiac deaths
- Audit processes need to be transparent / open & have process for escalation

